PRIMARY ZARISKI TOPOLOGY ON THE PRIMARY SPECTRUM OF A MODULE

Authors

  • H. Bijari Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159- 91775, Mashhad, Iran.
  • H. Fazaeli Moghim Department of Mathematics, University of Birjand, P.O. Box 97175-615, Birjand, Iran.
  • K. Khashyarmanesh Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159- 91775, Mashhad, Iran.
Abstract:

‎‎Let $R$ be a commutative ring with identity and let $M$ be an $R$-module‎. ‎We define the primary spectrum of $M$‎, ‎denoted by $mathcal{PS}(M)$‎, ‎to be the set of all primary submodules $Q$ of $M$ such that $(operatorname{rad}Q:M)=sqrt{(Q:M)}$‎. ‎In this paper‎, ‎we topologize $mathcal{PS}(M)$ with a topology having the Zariski topology on the prime spectrum $operatorname{Spec}(M)$ as a subspace topology‎. ‎We investigate compactness and irreducibility of this topological space and provide some conditions under which $mathcal{PS}(M)$ is a spectral space‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

ON THE MAXIMAL SPECTRUM OF A MODULE

Let $R$ be a commutative ring with identity. The purpose of this paper is to introduce and study two classes of modules over $R$, called $mbox{Max}$-injective and $mbox{Max}$-strongly top modules and explore some of their basic properties. Our concern is to extend some properties of $X$-injective and strongly top modules to these classes of modules and obtain some related results.

full text

The Graded Classical Prime Spectrum with the Zariski Topology as a Notherian Topological Space

Let G be a group with identity e. Let R be a G-graded commutative ring and let M be a graded R-module. The graded classical prime spectrum Cl.Specg(M) is defined to be the set of all graded classical prime submodule of M. The Zariski topology on Cl.Specg(M); denoted by ϱg. In this paper we establish necessary and sufficient conditions for Cl.Specg(M) with the Zariski topology to be a Noetherian...

full text

On two problems concerning the Zariski topology of modules

Let $R$ be an associative ring and let $M$ be a left $R$-module.Let $Spec_{R}(M)$ be the collection of all prime submodules of $M$ (equipped with classical Zariski topology). There is a conjecture which says that every irreducible closed subset of $Spec_{R}(M)$ has a generic point. In this article we give an affirmative answer to this conjecture and show that if $M$ has a Noetherian spectrum, t...

full text

The Basic Zariski Topology

We present the Zariski spectrum as an inductively generated basic topology à la Martin-Löf and Sambin. Since we can thus get by without considering powers and radicals, this simplifies the presentation as a formal topology initiated by Sigstam. Our treatment includes closed and open subspaces: that is, quotients and localisations. All the effective objects under consideration are introduced by ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 1

pages  53- 68

publication date 2020-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023